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Introduction

People get better on a task with practice. In this paper we take this non-

controversial statement, elaborate what it means to "get better", and propose two

mechanisms that account for some of the ways people get better. We trace the

development of a skill from the point when it is initially being memorized and applied In a

slow and halting fashion to the poiht where it has become fast and automatic through

practice.

We are interested in how students learn to use postulates and theorems in geometry

tasks like that illustrated in Figure 1. A scenario of how a student (based on two students

we have looked at in detail in geometry and three subjects working on an artificial proof

system) learns postulates is as follows: The student reads each of several postulates in a

section of a textbook. After a brief inspection of the postulates the student goes on to the

problems at the end of the section that require the student to use the postulates. In the

student's initial attempts with the postulates there is much looking back to them in the

textbook because they have not yet been committed to memory. These applications are slow

and there are mutterings that show low level matching of the postulates like "If A is RO and

B is NY then I can assert that ". After some practice the student has committed the

postulates to memory. After much practice their selection and application is very fast

In this paper we consider how postulates are initially encoded, how procedures are

created out of these encoded postulates, and lastly, how procedures speed up with practice.

The processes we describe have been implemented and tested as mechanisms on the

computer.

In our work we have focussed on a particular task within geometry. That task is



Given: RONY; RO if NY
Prove: RN = OY N

0

R

Proof:

Statements Reasons
....................................................

2. RO, aNY 2. ?
3. ON =ON 3. ?
4. RO+ON =ON +NY 4.?t
5. RONY 5. ?
6. RO +ON =RN 6. ?
7. ON +NY -OY 7. ?
8. RN OY 8?

FIGURE 1:

A proof to be completeby writing reasons.
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providing reasons to an already worked-out proof. We have been working mainly with the
.geometry textbook of Jurgensen, Donnelly. Maier, and Rising (1975). In this textbook, before

being asked to generate proofs the student is shown an example or two of a proof. Then

the student is shown a proof lacking reasons, or justifications, for each of the lines (see

Figure 1). The student's task with these nearly whole proofs is to provide the justifications

for each of the lines. A justification can be that the line was a given or that it was the result

of the application of a definition, theorem, or postulate. Besides showing how a proof works,

these problems give practice with the postulates.

Figure 2 shows a simple flow chart of our production system program that provides

justifications for lines in a proof. When it comes to a line it first checks to see whether the

line is a given. If so, it puts down given and goes to the next line. If it is not a given the

program matches the consequent of a postulate to the current line. If there is a match it

then tries to match the antecedent of the postulate to previous lines. If failure occurres it

tries another postulate; and so on. When it verifies that a postulate can apply, it writes the

name of the postulate and goes to justify the next line in the proof.

At this high level of analysis, the flowchart in Figure 2 provided a good model for the

behavior of all subjects at all levels of skill. However, there is a lot of information processing

detail being hidden in Figure 2 in the two boxes (e and f) where the consequent and

antecedents are being matched. Much of the learning we observed, particularly concerning

the postulates, took place with respect to the matching processes. Our discussion will focus

on how these matching skills evolve. Our analysis of this matching skill identifies three

stages similar to the general analysis of skill acquisition by Fitts (1964). The first is

encoding, where a set of facts required by the skill are committed to memory. The second is

proceduralization where facts are turned into procedures. The third is composition by which
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FIGURE 2:

Flow diagram of the reason giving task.
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the procedures are made faster vith 7ra-ctvi-r. We talk about each Vage in turn in

subsequent sections. First we describe dL': encoding stage.

Encoding

We propose that all incoming knowledge is encoded declaratively; specifically, the

information is encoded as a set of facts in a semantic network. To explain what this

assumption implies we should describe the consequences of storing knowledge declaratively

versus procedurally. (See also Winograd, 1975, for a discussion of procedural vs.

declarative encodings for knowledge).

Declarative Encodings

In a declarative encoding, the knowledge required to perform a skill is represented as

a set of facts. In our scheme these facts are represented in a semantic network. These

facts are used by general interpretive procedures to guide behavior. To take a non-geometry

example, suppose we learn in a French class the fact that "chien means dog". Then this

factual knowledge can be used to generate a French phrase by a general interpretive

procedure of the form:

P1: If the goal is to describe an object

and a word means the object

and the word is masculine

Then say "le" followed by the word.

This rule can apply to any piece of vocabulary knowledge we have - for.instance, that

"garcon means boy" -- to generate the correct phrase (e.g., le garcon). (By the way, the

general procedure P1 above is represented in production form; we will be using production

representations extensively.)

Perhaps the greatest benefit in representing the knowledge underlying procedures

declaratively comes from the flexi. ility in using that knowlodge. For example, suppose the

system has learned the transitive rule of equality, "If A = B and B = C, Then A = C". This
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rule could then be used by Cria procedurn to inake a forward deduction. That is, if

statements RO = NY and NY = WZ were siaed, then RO = WZ could be asserted. The

same knowledge could also be used by a different general interpretive procedure to reason

back from the consequent, "A = C", to test whether "A = B and B = C" are true.

Two other benefits of declarative representations are ease of analysis and change.

With the knowledge underlying procedures represented as data one can reason about the

procedures and use that reasoning to plan action or to change the procedures to make them

more efficient. Changing the procedure is simply a matter of adding or deleting links in the

semantic network.

The major drawback of a declarative representation is that its interpretative

application is slow. Each fact must be separately retrieved from memory and interpreted.

The interpretive procedures, to achieve their generality, are unable to take any short cuts

available in applying the knowledge in a particular situation. Many unnecessary or

redundant tests and actions may be performed.

Procedural Encodings
ai

A second way of representing knowledge about procedures is as something that can

be directly executed and so needs no costly interpretation phase. One way of representing

procedures is production systems (Newell & Simon, 1972; Anderson, 1976). The ACT

production system (Anderson, 1976) is a collection of If-Then rules that operate on the active

part of a semantic network. When an If part matches some part of active memory, then the

Then part of the rule is executed. The Then part either activates existing memory structure

or builds new memory structure.

One of the advantages of a procedural representation such as a production system is

that it handles variables in a natural and easy manner. For instance, in reason-giving variable

handling can become quite difficult when matching a postulate to a line to see if it applies.

When the consequent is matched to a ne, the variables in that consequent are given values.

Those values, or bindings of the variables, are used when the antecedent is matched to



previous lines. This variable handling is accomplished much more felicitously if the postulate is

encoded as a production than if it is encoded as a set of semantic network structures. An

example of a postulate is the addition property of equality which is stated in the text as:

If a = bandc = d, thena + c = b + d.

To build a production to encode this postulate for reason giving one builds into the If side

of the production the consequent of the postulate as a test of the current goal and the antecedent

part of the postulate as a test of previous lines. So, the above postulate would become:

P2: If the goal is to give reasons for a + c = b + d

and a previous line contains a = b

and a previous line contains c = d

Then write "Addition property of Equality"

This production combines boxes e, f, and g from Figure 2. In the first line (the goal

is to prove a + c = b + d) the production binds the variables a, b, c, and d to elements in

the current to-be-justified line. In the other two lines of the If side it checks that these

bindings are consistent with elements in previous lines.

Procedural knowledge represented in this way is fast because the If side of the

production is matched as one step. While time to execute a procedure is largely

independent of the number of productions in memory, execution time does depend on the
applied in1

number of productions that are ........... performing the procedure. So one can

achieve even more speed-up of a procedure by making its component productions bigger so

that there are fewer selections of productions. We will talk about this possibility later when

we talk about the composition mechanism. Not only are productions faster because they
pzr- r mv

skip the interpretation phase but they also can use parallel matching of If sides toonnh a

series of conditional tests in parallel.

On the other hand, there are several disadvantages to such a procedural

representation. In this form the knowledge cannot be inspected. However, some



understanding of a production's content is avaiiah!e by noting what it does. Changes

cannot be made to the productions, although there are schemes for creating new

productions that will effectively delete or restrict the range of applicability of "bad"

productions (Anderson, Kline, & Beasley, 1980.) Also, when a rule gets put into production

form it can only be used in that form. For instance, the above production, P2, does not

capture the use of the postulate for forward inferencing. For that, we would need another

quite different production:

P3: If it is known that a = b

and it is known that c = d

Then assert that it is known that a + c = b + d.

Getting the best of both encodings

We clearly would like to have the advantages of both representations. One way of

achieving this, of course, is to keep knowledge in both representations. When speed is

needed, the procedural encoding is used. When analysis or change is needed the

declarative encoding is used.

There is little problem in creating a declarative description of a rulem creating new

structure in semantic nets from external input is relatively simple. On the other hand it is

much more difficult to encode that knowledge procedurally. We have seen that a procedural

encoding is a highly specific interoretation of a rule. If there are many procedural encodings

possible, which one should we pick? In present production systems the answer to this

question changes with every task and is built in by the programmer.

From a psychological point of view a system which can directly encode rules as

productions has a number of undesirable features. First, learning is faster than what we

observe in people. People become proficient at a skill gradually rather than in an all-or-none

manner. Second, by encoding the rule as a production you get an exact and specific match

every time. There are no errors, and no other ways to make the match. One might want
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more flexibility in the match. For example, suppose P2 were to apply to the following

situation (which occurs in Figure 1):

current statement: RO + ON a ON + NY

previous statements: RO = NY

ON = ON

The first line of production P2 would apply with the following binding of variables: a

= RO, c = ON, b = ON, and d = NY. This means that it must match for its second and

third lines

a = b; i.e., RO = ON

c = d; i.e., ON = NY

Of course these attempts will fail. The problem is that the production does not appreciate

the commutative nature of the plus operator and this increases the number of possible rules

that should be built for the postulate. Rather than try to anticipate all the possible procedural

interpretations of a postulate we suggest that the postulate be represented declaratively and

it be interpreted by a general evaluator which could deal with commutativity.

Therefore, when such rules initially enter the ACT system they are stored as facts in

a semantic net. Through mechanisms to be discussed later the rule will automatically turn

into one or more productions through its use. So with the initial encoding we have the

benefits of a declarative representation. That knowledge can be turned into faster

production form as a consequence of being used interpretively. To illustrate how declarative

knowledge can be used interpretively we next describe the general matching productions

that interpret postulates stored in semantic net form.

Interpretive Matching Productions

To match a declarative representation of a rule to a statement, we use a general

interpretive matcher written as productions. These matcher productions do more deliberately
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and in a piecemeal fashion what is done automatically by a production system when

postulates are represented as productions. They try to put two structures into

correspondence and bind variables along the way.

Table 1 lists the seven productions that do the match. They are stated in a more

understandable English-like syntax than their actual implementation. The matcher goes

through both the rule and the line comparing corresponding nodes. If a constant, like =, is

pointed to in the rule then a test for 'equality is made to see that the rule and the line contain

the same constants. If a variable in the rule, as noted by the "isa variable" tag on the

element, is pointed to then a binding of that variable is checked or made.

Variable bindings are kept as temporary network structure. For a variable to be

bound means that a proposition describing what it is bound to is resident in memory. If a

variable has no binding, as seen by the failure to retrieve a binding from memory, then the

binding is made with the node being pointed to in the statement as the value. If there is

already a binding then the equality of that binding to the statement node is checked.

Because the bindings are held in memory they are reportable unlike variable bindings in a

production.

We now show how the matcher productions would match the consequent of the

reflexive postulate, "A = A", to "ON = ON". First the "A" on the left is compared to "ON"

on the left.

A-A ON = ON

t t

Production P6 fires in the matcher. It notes that A is an unbound variable so it deposits "A

is bound to ON" into memory. It also switches attention to the next elements in the

expressions. Next the two equal signs are compared.



Table 1. Some general interpretive productions for matching postulates to lines of a

proof.

P4: If the current element of the rule pattern is a constant

and the same element occurs in the line

Then move to the next elements in the rule and the line.

PS: It the current element of the rule pattern is a constant

and the same element does not occur in the line

Then the attempt to match has failed.

Pe: If the current element of the rule is a variable

and this variable does not have a binding stored with it

Then store the current element of the line as the binding

of the variable

and move to the next elements in the rule and line.

P7: if the current element of the rule is a variable

and the current element of the line is stored as the value

of the variable

Then move to the next elements in the rule and the line.

P8: If the current element of the rule is a variable

and the value stored with the variable is different than

the current element of the line

Then the attempt to match has failed.



P9: It there are no more elements in either the rule or the line

Then the attempt to match has succeeded.

P1O: if there are r o more elements in the rule but there are

in the line (or vice versa)

Then the attempt to match has failed.
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A A ON =ON

t 1*

Production P4 fires because it finds equal constants and increments the two pointers to A on

the right and ON on the right

A = A ON = ON

t t

Production P7 fires here because it finds an already bound variable, A. It compares the

binding for A, which is ON, with the element currently pointed to in the line, which is ON,

and since they are equal it succeeds. Now there are no more elements in either the rule or

the line and production P9 fires and states that the match has succeeded. At this point the

matcher has just completed a successful match and as a by-product has created a list of

variables and their bindings.

The subject at this point is applying his or her knowledge in -a slow interpretive

fashion processing symbol by symbol. The procedural representations of the knowledge, for

example production P2, are much more efficient pnd apply the knowledge directly. Based on

an analogy to a process in computer science, we use the term "knowledge compilation" to

refer to the process by which subjects go from interpretive application of knowledge to

direct application. This process translates declarative facts into productions. There are two

subprocesses: proceduralization, which translates parts of declarative rules into small

productions, and composition, which combines productions into larger productions.

Procedu ralization

With both a semantic net and productions to represent knowledge there is the

problem of how to smoothly transfer knowledge from one store to the other. Production

system models (e.g., Waterman, 1975; Anderson, Kline & Beasley, 1980) have accomplished
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this transfer in the past by building productions with a special "build" operator in the Then

side of a production. This special operator in ACT takes a network description of the

knowledge underlying a production as an argument and adds the production to production

memory. This implies that people can transfer their factual knowledge into procedures by

abstractly ruminating upon the knowledge. However, this conflicts with our observation of

students and with general wisdom about skill acquisition that skills only develop by

exercising them.

Therefore, we have developed a different means of converting declarative knowledge

into procedural knowledge - a mechanism that constitutes a major augmentation to existing

production system architecture. Every time a production matches some long term memory

network structure which has to be retrieved into working memory, ACT creates a new

production that has that network structure incorporated into it and which avoids the need for

the long-term memory retrieval. This simple mechanism merges semantic net knowledge into

the production that uses it. In order for this mechanism to be selective in what memory it

merges we make a distinction between two kinds of declarative memory, a permanent

memory and a transient, temporary memory. In ACT this permanent memory is the activated

part of its semantic network (long term memory) and the temporary memory is network

structure that has just been created. Postulates, once committed to memory, are part of

permanent memory. The representation of the current problem is part of temporary memory.

When the If side of a production matches memory it matches some activated

permanent memory and some temporary memory that has just been created by information

entering from the environment. At this point a new production is created that has

incorporated the permanent memory matched. As an example, we will show how this

process of proceduralization applies to production P6 of the matcher productions in Table 1.

This production matches an unbound variable of a postulate to a corresponding part of a

statement. To explain the operation of proceduralization we will have to display more of the

actual structure of P6 than was given in our informal statement of P6 in Table 1.

P6 If the goal is to match
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and the rule pointer is pointing to an element in the rule

and the element is a variable

and the element is not bound

and the line pointer is pointing to an element in the line

and the rule pointer is before an element

and the line pointer is before an element

Then bind the variable in the rule to the current element in the line

and move the rule pointer to its next element

and move the line pointer to its next element

Now suppose the symmetric postulate "If A = B then B = A" is a semantic network.

Also, the statement "RO = NY" is in temporary memory since it is what ACT is currently

attending to. Suppose P6' applied to this situation when an attempt was being made to

create a match between B, of the consequent (B = A) of the rule, and RO, of the statement.

The third and fifth lines of P6' would match to long term memory elements as follows:

the element is a variable <-> B is a variable

the rule pointer is before an element <-> B is before =

What is accomp!ished by these long term memory retrievals is that the rule elements

are identified as B (currently pointed to) and = (next in the rule). These are permanent

facts that are known about the postulate. We can create a production that is equivalent to

PS' in this situation by deleting the reference to these two clauses and, wherever else the

rule elements are mentioned replace them by B and =. This specialized version of the

general production is given below:

P11: Nf the goal is to match

and the rule pointer is pointing to B in the rule

and B is not bound

and the line pointer is pointing to an element in the line

and the line pointer is before an element
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Then bind B to the current element in the line

and move the rule pointer to

and move the line pointer to its next element.

In creating this production ACT has effectively proceduralized a bit of the knowledge

that is contained in the symmetric postulate - namely, that the consequent consists of a

variable B before =. It is now no longer necessary to retrieve this knowledge from memory.

Rather, the knowledge is now implicit in the production. Note that, in this step of

proceduralization, we have reduced the demand on working memory in terms of the amount

of information that needs to be kept active from long-term memory.

Of course, production P11 by itself is far from being a proceduralized version of the

postulate. To accomplish this every step in the application of the postulate needs to be

proceduraized. When this is accomplished we will have a procedural version of the

postulate that embodies one possible use of the knowledge. Note that the knowledge at this

state is still being applied in a piecemeal fashion. To get a unitary procedural representation

of the postulate we need the process of composition which is occurring concurrently with

proceduralization.

Composition

In our development of composition we have been strongly influenced by the work of

Lewis (1978). Composition occurs concurrently with proceduralization but we think it

continues after preceduralization is complete. It is for this reason that we designate it the

third stage in skill development. The basic idea of composition is that pairs of productions

which are executed in sequence are combined into single productions. It is assumed that

the time to execute a production system task is roughly proportional to the number of

productions that were fired. Therefore one effect of combining productions into larger

productions is to decrease the amount of time for a procedure. to apply.

The easiest way of combining two productions into a third is to add together their If

sides and their Then sides. So suppose the following two productions fired consecutively.
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P12: Ifyou see a red light

Then assert danger. 1

P13: If there is danger and another person is near you

Then warn that person.

The simple composite is:

P14: If you see a red light

and there is danger

and another person is near you

Then assert danger

and warn that person.

There is a problem with this composite. There is a test for "danger" in the If side

that will not be satisfied. That is because the danger that is being tested for in P14 was

added by P12 in the original sequence. Since the If side of the composite, P14, is made of

P12 and P13 the parts of P13 that are dependent on action taken by P12 must be changed

in P14. The change needed in the algorithm that gave rise to P14 is that clauses in the It

side of the composite are deleted if they were asserted in the Then side of the first

production and tested in the If side of the second production. Lewis' algorithm for

composition is as follows: Suppose two productions fire, one right after the other. The first

I A Then B has If side clauses represented by A and Then side clauses represented by B.

The second, It C Then D, has If side C and Then side D. Then, a new production can be

constructed that will do the work of both.

It A Then B

If C Then D

If A & (C-B) Then B & D
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This new production will have as a If side all the If clauses in A and all the If clauses in C,

except the clauses that were asserted in B. As a Then side this new production has the

union of the Then sides in B and D.

In this case the composite of productions P12 and P13 would be:

P15: If you see a red light

and another person is near you

Then assert danger

and warn that person.

The If side of the new production contains all the If parts in the first production and

the test of the presence of another person in the second production. The test for "danger"

in the second production is not in the new production because it is asserted in the Then part

of the first production. The Then part of the composite production contains all the

assertions from the first two.

We made several modifications to the Lewis algorithm. The major change came

because of the use of variables in the production system. A join process is applied that

checks to see if the same element occurs in the two productions even if it is referred to

differently. A variable may be bound to an element in one production but in another

production the element may be bound to a different variable or be directly referenced (i.e., is

a constant). If the element is directly referenced in one production, it is directly referenced

in the composite rather than being referred to by a variable.

Suppose the following two productions fired.

P16: If the length of segment A is equal to the length of segment B

Then the result is that segment A is congruent to segment B.

P17: If the result is something

Then write the result.
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As the composite production is being created the Then side of P16 is joined with the If side

of P17. The reference to "the result" in P17 is replaced by the more specific "segmentA is

congruent to segmentB". The composite production is:

P18: If the length of segment A is equal to the length of segment B

Then the result is that segmentA is congruent to segmentB

and write segmentA is congruent to segmentB.

This join process also takes place when the same clause occurs in the If sides of

both productions. One of the clauses must be deleted so that the actual composition rule

looks more like

If A Then B

If C Then D

If (A-C) & (C-B) Then B & D

where "(A-C)" means all clauses in "A" excepting ones also in "C". Other parts of the

composition process are more specific to the production system language we are using and

we will not discuss them here.

We have described two processes. The first process is proceduralization: the

instantiation of variables bound to long term memory structure. This process deletes If

clauses in the specific production that match long term memory propositions and instantiates

variables that are bound to long term memory. Proceduralization makes small and specific

productions. The second process is composition. It combines two productions that fire after

each other into a single production.

These two processes automatically bring about the transformation of declarative

6 6 -. . .. . .. .. .. . ... . . .. . ... . . . . . . .. . . . . . .... .. . . . . . . l . . . . .
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knowledge into procedural knowledge discussed earlier. When a rule is in semantic net form

they will, after much practice with it, create a production that embodies one procedural

interpretation of that rule. To illustrate this process let us look at how the consequent of the

symmetric rule, "If (A = B) then (B = A)", was turned gradually into a single production.

We used general matcher productions (that were somewhat more elaborate that the

general productions showed in Table 1) to match the consequent, "B = A", to several lines,

such as "RO = NY". It took 16 firings of these general matcher productions to accomplish

the match the first time. During this pass the proceduralization process created 16

productions that were specific versions (specific to the consequent of the symmetric rule) of

the matcher productions. There are 15 pairs of successive productions in the sequence of

16 general productions that fired. Composition of the general matcher productions was

attempted and created 15 general composites with each composite able to do the work of

two of the original matcher productions. However these general composites never applied

later because the system favored the more specific productions created by the

proceduralization process.

The consequent was then matched a second time and the 16 specific productions

created by the proceduralization process during the first pass fired. Because these

productions were already specific the proceduralization process could not produce any new

productions. The composition process did produce 15 specific composites, i.e. 1&2, 2&3 ...

15&16, from those 16 specific productions.

In the third pass the composites created during the second pass fired. Matching

the consequent only took 16/2, or 8, production firings. After five sessions where the

consequent of the symmetric rule was matched a production was created that was able to

match the consequent of the symmetric rule to a line in a single step. This production is:

P19: If the goal is to match the line to the consequent

of the symmetric rule

and there are three elements in the line
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and the second element in the line is =

Then bind B to the first element in the line

and bind A to the third element in the line

Although this production exists all previously created productions are also around

because proceduralization and composition do not destroy the productions they build from.

At this point of practice there exists the orginal semantic net representation of the

consequent, the general matcher productions, and the 15 general composites of those

matcher productions which never executed. Also there are 16 specific productions created

by proceduralization plus (15 + 7 + 3 + 1) 26 composites. Thus, in total, 57 new

productions were created.

In this part of the paper we have described the mechanisms that enable to one to

become faster at a skill. In the second half we talk about some psychological phenomenon

that are accounted for by these mechanisrs. But first we will travel off the path of the

divussion a bit and consider whether proceduralization might not be seen as a special

case of composition.

Creating specific productions without proceduralizatiof

We have shown how knowledge is smoothly transfered from a declarative semantic

net to production form. The proceduralization pr.,,ess that does this has the effect of

deleting from the It side of composite productions clauses that match long term memory.

Proceduralization also makes specific productions. What would happen if there was no

semantic net and declarative knowledge was stored as productions instead? This is the case

with the OPS production system language (Forgy & McDermott, 1977; Forgy, 1979) whose

only permanent memory is production memory. We will show here that the effects of

proceduralization can be duplicated with the composition process.

First, we must state how a semantic net can be functionally represented as
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productions. In a semantic net there are nodes, links leading from those nodes, and values

attached to those links. One way of mapping this to productions is to have a node as the If

part of a production and all facts known about it as the Then part. To retrieve facts about

the node the node is asserted into memory. The production for that node then fires and

deposits all facts about that node into working memory.

We now show how a production specific to matching part of the symmetric postulate

can be created by composing memory retrieval productions with general matching

productions. P20 is a production that deposits all links out of B (of the consequent "B = A")

when it executes. It mimics the retrieval from a semantic net of all facts about B.

P20: if B

Then B is a variable

and B is before -

P21 is a production in the matcher which is identical to production P6' given earlier. It

matches a variable in a postulate to a piece of a statement.

P21: If the goal is to match

and the rule pointer is pointing to an element in the rule

and the element is a variable

and the element is not bound

and the line pointer is pointing to an element in the line.

and the rule pointer is before an element

and the line pointer is before an element

Then bind the variable in the rule to the current element in the line

and move the rule pointer to its next element

and move the line pointer to its next element

When the two productions P20 and P21 fire then their composite is created as the
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production P22 . This new production has fewer clauses in the If side because the

composition algorithm causes "B is a variable" and "B is before =" to be deleted. These

two clauses were asserted in P20 and matched to in P21. Also the reference to the current

element in the rule has been replaced by its instantiation, B, because of the application of

composition's join process.

P22: If B

and the goal is to match

and the rule pointer is pointing to B

and B is not bound

and the line pointer is pointing to an element in the line

and the line pointer is before an element

Then bind B to the current element in the line

and move the rule pointer to =

and move the line pointer to its next element.

With P22 we have a production that is identical, except for the additional B, with the

production P11 that was created by the proceduralization process from the application of a

production to a piece of semantic network. Thus by representing all knowledge as

productions the single mechanism of composition can also accomplish proceduralization.

Effects of Practice

So far we have presented a proposal to explain how an information processing

system can have both the flexibility of a declarative semantic network representation and the

speed of a procedural representation for rules. Our explanation of how a system

automatically develops fast productions by practice rested on the combination of

proceduralization and composition. In the followirg subsection we will show how these

mechanisms account for practice effects.
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Einstellung

The speed up from composition seems too good to be true. Seemingly the only price

is the storage space required to store all the new rules, and in the human organism this is a

plentiful resource. However, there is another price to be paid. That price is a growing

inflexibility and a lack of ability to adapt to change. This phenomenon associated with

composition seems to correspond closely in the problem-solving literature to a phenomenon

called Einstellung.

The Einstellung effect was extensively studied by Luchins (1945). He observed the

effect using several tasks, but the most well known task is the water jugs task. In this task

the subject sees three different sized jars with stated capacities. The problem is to measure

out an amount of water using some or all of the jugs but using no measuring instrument

other than the jugs. Subjects are shown two methods, a long and general method that takes

4 steps and uses 3 jugs, and a shorter method that takes 2 steps and uses 2 jars.

After being shown both methods, one group is given practice problems in which they

can use only the long method. Then they are given a problem that can be solved by either

the short or long method. Most subjects solve it using the long method. In contrast, another

group of subjects is shown both methods but does not receive practice on the long method.

When they are presented with the problem that can be solved with either method most use

the short method. Luchins showed this effect with other tasks, like maze tracing, proofs In

geometry, and extracting words from letter strings.

Lewis (1978) demonstrated Einstellung using a symbol replacement task. He gave

subjects practice with rules in a symbol replacement task. At some iater point he presented

a new rule that would offer a short cut in some cases. He showed that the more practice

subjects had with the original set of rules the less chance they would use the short cut rule.

Lewis then showed how composition would predict the same results. His explanation

relies on an interpretation of how the If part and Then part of a production are processed.

The If part is processed at the beginning of a cycle with the selection of a production to fire.
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Every production in the system ha.1 an opportunity to match at this time. However, once a

production is selected, each clau.3o in the Thu.'i side is unconditionally executed. No other

production can apply at this time.

The result of composition is to turn an open, conditional procedure into a closed,

unconditional one. For example, when a production is created from the composition of five

other productions, it does the job of those five productions as one uninterruptible step. If

there was another production that might have applied in the middle of that five step

sequence, it cannot apply now because it is bypassed.

So we see composition can cause problems. In its early life, a procedure consists

mostly of propositions in a semantic net. This gives the organism great flexibility in

interpreting and even changing rules. However, once composition stairts there is less of a

chance that a small (new) addition will be able to compete with the larger composite rules.

This is because in most versions of production systems larger rules are given a preference in

application over smaller rules. There are ways to get around the Einstellung effect but some

of them involve going back to the original semantic net representation of the procedure and

reinitializing the slow interpretation of that procedure.

Speed Up

People speed up at a task as they practice it, often without trying to speed up.

Composition predicts this kind of automatic speed up. In our implementation of composition,

on every cycle of the production system the current production is composed with the

previously executed production. If 120 productions fire in the performance of a task, then

the next time the exact same task is performed 60 productions will fire, then 30 productions,

15, 8, and so on. This is an exponential speed up, t = a ° (1/2)P, where a is initial time to

perform the task and p is the trial number. By assuming that pairs of productions are

composed only with a certain probability we can get functions that are slower than halving.

Even with such assumptions, composition by itself, with no further considerations, would
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predict an exponential practice funct;on -- i e., t = abp .

It has consistently been shown that human speed up is not exponential, but rather

follows a power law function (Snoddy, 1926; Crossman, 1959; Lewis, 1979)," t = a 0 pb,

where a is initial time, p is trial number, and b is rate of speed up. When time vs. trials (of

practice) is plotted on log/log paper the result approximates a straight line, (t = a ° pb = >

log(t) - a' + b ° log(p)) where the intercept is the parameter a' and the slope is the

parameter b. One explanation of this discrepancy between predicted and actual speed up

that Lewis (1979) offers is based on the premise that power law speed up is not produced by

one mechanism but instead comes from the combination of speed up of many subprocesses.

He notes that a power law can be approximated by the sum of many exponentially

decreasing functions. Thus, there could be processes of a task that would be at various

stages of exponential speed up (as composition would predict) but the measurable outcome

of the task would be their sum. This summed result would follow the slower power law

function.

There are a number of other complicating factors that predict a slower-than-

exponential speed up. Composed productions tend to have larger if sides and Then sides

than the productions that gave rise to them. The analysis above assumes that time to apply

a production is independent of its size. However, this is not true in any known

implementation and may not be true in the human head. For instance, it is reasonable to

suppose that time to match the If side of a production, even assuming parallel machinery,

would be a logarithmic function of complexity (Meyer & Shamos, 1977). Thus, part of the

benefit of composition may be lost to increasing production size.

Another complexity has to do with strategy shifts which do occur in many complex

tasks such as reason-giving. Strategy shifts involve changing to an algorithm that requires

fewer steps. It is unclear whether strategy shifts would produce immediate speed up.

Although there are fewer logical steps in a better algorithm, the time to perform it may be

longer because the processes underlying the steps have not been composed.
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Still another complexity is pointed out by Newell and Rosenbloom (this volume) in

their analyses of the power law. There is variability in the problem situation and many

production sequences will be needed to deal with different situations. This contrasts with

the implicit assumption above that there is just one sequence to be learned. While short

subsequences of productions may occur frequently, longer subsequences will occur less

frequently. This means that few compositions of short sequences will be needed to cover all

possible situations, but many compositions of long sequences may be needed. Thus it will

take longer before enough compositions occur to cover all longer subsequences. While we

do not agree with the Newell and Rosenbloom assumptions that the number of sequences

increases as a power or exponential function of length, any increase in the number of

possible sequences with length will slow down the speed-up.

So, to summarize: a pure application of composition leads to the prediction of

exponential speed-up. However, complications true of a realistic situation would tend to

slow the speed-up to less than exponential. This point has also been argued by Lewis

(1979). True, it would be remarkable if these complications served to yield a pure power

function. However, it is not possible to discriminate a pure power function from something

that is close. Moreover, data do exist with systematic deviations from a power law. We will

discuss some of our own.

An experiment looking at effects of practice

We were interested in seeing how these various complications combined in the task

we were most interested in - i.e., reason giving in a proof system. Three subjects were run

for 10 one hour sessions. These sessions were held on consecutive days except for

weekends. All subjects were graduate students. We developed an artificial postulate set

to minimize the effects of previous knowledge. A set of 8 postulates was used to

construct 150 proofs. Each proof was 10 statements long and was made up of 4 givens and

the application of 2 single antecedent rules and 4 double antecedent rules. No proof

duplicated any other.
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Proofs were displayed by computer on a terminal screen. Because we were

interested in what subjects were looking at, only part of the proof was displayed at any time.

The subject had to explicity call for a part of the proof that was to be viewed next. In this

way we could record both what the subject looked at and how much time was spent at that

location. The screen had labeled columns for givens, statements, reasons, and antecedents

and consequents of the postulates. At all times the statement to be justified was displayed

on the screen. The subject pressed keys to view anything else.

Various commands were developed to facilitate movement through the proof. The

basic command consisted of two keys, the first denoting the column to move to (i.e. g for

given) and the second a digit for the row number. Short cuts were also allowed. <Digit>

would send the subject to row <digit> in the same column. <Period> would go to previous

line in the column, while <space> would go to the next line. Hitting the column key twice

displayed an element in the same row but in the selected column. This was useful for the

back and forth scanning of antecedents and consequents. Data collection consisted of the

computer recording the location moved to and the time spent there. A location consisted of

a given, statement, antecedent, or consequent.

Figure 3 shows the average data for the three subjects, plotted on a log-log graph.

Subjects generally took about 25 minutes to provide justifications to the first proof. After 10

hours of practice with the task they were able to do it in about one to two

minutes. We have plotted total time per problem, number of steps per problem (i.e.,

commands executed), and time per step. We thought time per step would reflect speed up

on the problem due to such automatic factors as composition. We thought number of steps

per problem would reflect other factors in addition to composition, such as strategy

modifications. We were interested in how these two factors combined to yield an overall

power law.
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It is interesting to note that two power laws appear to underlie the overall power law

for total time. This is seen by the relatively good approximations to straight line functions on

the log-log plot. If the nu.mber of steps is decreasing at the rate N a AnPbn where N Is the

number of steps, An is the intercept' in the log-log plot, P is the number of problems

(practice); and bn is the slope of the log-log function; and if the time per step is decreasing

at the rate T a AtPbT where T is the time per step, At is the intercept, P the number of

problems (practice), and bt is the intercept; then the total time (TT) will obey the following

power law: TT - (AnAt)Pbn + bt.

Subjects' search steps could be classified according to whether they were scanning

givens, statements, consequents of postulates, or antecedents of postulates. Figure 4

shows log time plotted against log practice for each component for subject R. The differing

slopes in Figure 4 reflect some major trends in subject improvement Like the algorithms we

developed earlier, subjects started out indexing the postulates by their consequents. They

first learned the nine consequents and their order in the postulate list. Subjects fairly quickly

stopped scanning the postulates by consequent and rather went to the correct one. This is

reflected in Figure 4 by the rapid drop-off on the curve for consequent scanning. Subjects'

learning of the antecedents was much slower, partly no doubt, because they had less

practice with these. Subject R came to the point where she completely learned the

antecedents. The other two subjects never quite achieved that state. To the degree subjects

were able to commit antecedents and consequents to memory, any inspection of the

postulate list just dropped out of their protocols.

Although both the number of givens and the number of statements in Figure 4 are fit
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fairly well by linear functions on the log-log scale, there is not much drop-off in these

functions until after trial 20. Despite the fact that all the functions in Figure 4 show a strong

linear component there is also a strong quadratic component in the deviations from linearity.

Basically, all the functions appear to be speeding up faster than a power law. In fact for

subject R, unlike the other two subjects, 3 out of the 4 components are better fit by an

exponential function than by a power law.

To summarize our presentation of this data, it seems that a rather broad spectrum of

changes underlie the systematic improvement of subjects at the reason-giving task. There

are strategy changes, such as searching statements backwards from the to-be-justified line

instead of forwards from the beginning of the statements. One major development Is

memorization of the postulates so that they can be directly applied without search. There

are other kinds of optimizations detected by subjects such as not searching the givens. The

other major speed-up occurs with respect to the time subjects spend in the individual steps

of a problem. However our main point here is that in our task there seem to be many

processes speeding up faster than a power law. When these are combined they better

approximate a power law. Thus, we do not think that the fact that overall speed up better

fits a power law refutes the psychological validity of the composition process as one of the

underlying mechanisms producing the speed up.

Automaticity

In their 1977 Psychology Review papers Shiffrin and Schneider identify two modes of

human processing: one controlled, and the other automatic. They describe controlled

search as serial and requiring both processing and memory resources. Automatic search is

parallel and does not interfere with other processes requiring resources. Although they

provide a description of automatic processing, they do not say how it can develop from a

controlled process. They do describe the circumstances under which it will develop. Parallel
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search of a list develops when a search procedure is applied over and over to the same list

(their consistent mapping condition) and does not occur when a search procedure is applied

over and over to varying lists (their varied mapping condition). In this section we will show

how composition and proceduralization turn a controlled, serial process into an automatic

parallel process. But first we will be more specific about some of the psychological data we

want to explain.

The Neisser, Novick, and Lazar (1963) visual search task is one that showed a

transition from serial to parallel search. Subjects scanned a matrix of letters for characters

in either a 1, 5, or 10 character list. These lists were embedded, so that the 10 item list

contained characters in the 5 and 1 character list. After about 20 days of practice, on the

same lists, subjects were able to search a matrix for any one of 10 characters as fast as they

searched for a single character.

Gibson and Yonas (1966) ran a visual search experiment with several age groups.

After practice their subjects could search a matrix for 2 characters as fast as for one.

Briggs and Blaha (1969) used a memory scanning task in which several characters are kept

in memory and the subject responds whether a stimulus character is in that set. They found

that subjects were as fast to respond with 2 characters in memory as with 1 character.

Mowbray and Rhodes (1959) found that after 15 days of practice a subject responded as fast

in a 4 q forced-choice task as he did in a 2 choice task.

In general, though, the data do not overwhelmingly point to the development of a

completely parallel search. There are other data that, although they show a substantial

reduction in search rate with practice, still show some residual effect of number of memory

elements on search rate. It may be difficult to find evidence for complete, unlimited-capacity

parallel search because any other serial process, like double-checking the answer, will hide

it. Even if a serial subprocess is only occasionally added to an unlimited-capacity parallel

one, the average data will look serial (i.e., show an effect of list length).

Searching memory sets that change from trial to trial does not show the same pattern
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of results as searching fixed memory sets. Kristofferson (1972) showed no change in the

search rate per item for 1 and 4 item lists with practice in a memory scanning task.

Nickerson (1966) showed only a slight reduction in search rate.

In summary, then, a motivated individual searching a never changing list will, after

much practice, search it in parallel (i.e., where reaction time is largely independent of the

number of elements). However, if the list changes from trial to trial, the individual will have

to search it serially and the rate of search will either not decrease or decrease very little with

practice. We will now show how composition and proceduraization predict these results.

It was shown earlier that composition can turn a several step process into a single

step. This can also be looked at as turning a serial process into a parallel one. We show

how this occurs with a memory scan task with a fixed list, A 0 R T. Two general

productions follow that will compare a probe with a list in memory. These productions scan

a list from left to right until an element in the list matches the probe.

P23: I considering an element in the list

and the probe equals that element

Then say yes.

P24. It considering an element in the list

and it is not equal to the probe

and the element is before another element

Then consider the next element.

After some practice searching the list for T the following specific productions are

created by the proceduralization process. Proceduralization causes the memory set

elements, which are in long term memory, to become incorporated into productions.
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P25: If considering A

and Probe is not A

Then consider Q

P26: It considering 0

and Probe is not Q

Then consider R

P27: If considering R

and Probe is not R

Then consider T

P28: If considering T

and Probe is T

Then say yes.

Then with more practice searching for T composition will combine these specific

productions into a production that will recognize that the probe is equal to T in a single step.

(Note that this production along with all the others produced by composition are shown with

smaller Then sides than they actually have.) That production is:

P29: If the probe is T

and not A or 0 or R

Then say yes.

After practice searching for the other members of the memory set, composition also

creates the following productions that will recognize when a probe is equal to a member of

the list. These three productions are:

P30: If the probe isA



30

Then say yes.

P31: If the probe isQ

and not A

Then say yes.

P32: If the probe is R

and not A or 0

Then say yes.

Once these productions are created then any of the elements in the memory set can

be recognized with the application of a single production. If we assume that time to execute

these productions is the same then we have parallel search. So, with a fixed list cor, )osition

predicts parallel search. According to Schneider and Shiffrin (1977) another effect of

automaticity is to make processing time independent of the number of alternatives in the

display. This would be a result of composing together the productions that searched

through the display. Then there would be specific productions that recognized each element

in each possible position of the array.

The data for searching varying lists show little or no reduction of search rate with

practice. In these cases the composition algorithm will only be combining general

productions. Proceduralization will not occur because the memory sets are only kept in

temporary memory. This is unlike the case when fixed lists are used and specific

productions are also created. Here we show a general composite production that would be

created after matching probes to the fourth item in lists with different elements.

P33: If pointing to the first element in the list

and it is not equal to the probe item

and the first element is before a second
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which is not equal to the probe item

and the second is before a third element

which is not equal to the probe item

and the third is before a fourth

which is equal to the probe item

Then say yes.

Unlike the specific production that searches for T this general production has more

clauses in the If side. These extra elements are needed to match the structure of the

memory set. The cost of generality is an increase in the size of the If side of a production.

If we assume that working memory is limited in size then we will not be able to keep all of

the memory set in working memory and so the large general production will never apply.

Thus, in a search task with lists that vary we predict little or no improvement in search rate

for subjects relatively experienced in searching lists because their general search

productions are already as large as possible.

It is important to recognize that under our analysis two things are happening in the

automaticity paradigm. For one thing, composition is collapsing a series of productions into

one, producing a loss of the set size effect. In addition, proceduralization is relieving

working memory of the need to maintain a representation of the memory set This second

factor we think is responsible for the loss of interference with concurrent tasks that Shiffrin

and Dumais (this volume) report occurs with practice. That is, performance of one task does

not suffer interference from a concurrent automatic task. This result is predicted because

working memory no longer needs to maintain in active state long-term memory facts for

performance of the automatic process.

Losing track of intermediate results
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assume that a relatively constant amiount of time will be spent on problems then in the initial

stages of practice some good solutions will not be discovered because they involve too

much search time. As the search process with a problem becomes faster, more and more of

the search tree can be explored and so new solutions will be discovered.

We observed this kind of development of competence in one of the students that we

taught geometry to. His early problem solving behavior showed much linear search through

the textbook for concepts he had read previously but had forgotten. Usually this search took

much time and after several minutes he would give up even though eventually he would have

found what he was looking for. Then we showed him a more efficient way of searching the

textbook by checking the glossary. At this point he was able to find information much faster

and so solved more problems successfully.

Similarly, proceduralization does not change the procedures. It only makes them

specific to the knowledge used. However, it too can change the behavior the system is

capable of by reducing the demand on working memory to maintain long-term memory facts.

Thus, more different kinds of information can be kept in working memory and so new

relationships can be seen between active information. Also proceduralization releases

working memory for concurrent tasks that might facilitate the problem-solving.

So we see that behavior will be changed by these simple automatic learning

mechanisms. The interesting thing about them is that expertise comes about through the

use of knowledge, and not by analysis of knowledge. There is no intelligent homunculus

deciding whether incoming knowledge should be stored declaratively or procedurally, or how

it should be made more efficient.
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